

Avances en el uso de analítica de video para realizar aforos automáticos que permitan el conteo y la caracterización de los usuarios en un sistema de transporte masivo

Pérez-Arteaga¹, Guzmán¹, Munizaga²

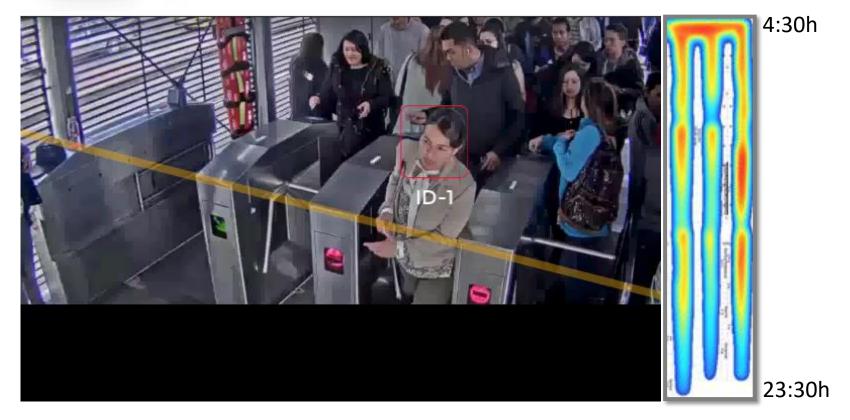
¹Universidad de los Andes ²Universidad de Chile

Salón PS 204 – Miércoles 26 de Junio 10 AM

Cartagena de Indias, Colombia 26-28 de Junio de 2019 Organizadores

Objetivos

- Detección de rostros con videos análogos existentes de las cámaras de seguridad ubicadas a las entradas a estaciones en Transmilenio.
- Evaluar y ajustar algoritmos de estimación de género y rango de edad.
- Validar/Auditar reportes de ingresos reportados con SmartCard mediante aforos de videos.
- Propuesta arquitectura edge computing.



Entradas : ⁰ Salidas :

Video estación Av. Ciudad de Cali Bogotá- Noviembre 13 de 2018

Hay dos tipos de enfoque básicos a la hora de abordar el problema de detectar un rostro en una imagen:

- i. Enfoques basados en los rasgos faciales. Estos métodos se basan en buscar determinados elementos que los que componen una cara, como pueden ser los ojos, líneas de contorno, etc.
- ii. Enfoques basados en la imagen. En este caso los métodos trabajan con la imagen completa o zonas concretas de la misma, efectuando cálculos que determinan si hay una cara o no, sin buscar rasgos concretos.

De acuerdo con la revisión de literatura aplicamos <u>búsqueda de rasgos</u> por ser más eficiente a nivel de costo computacional.

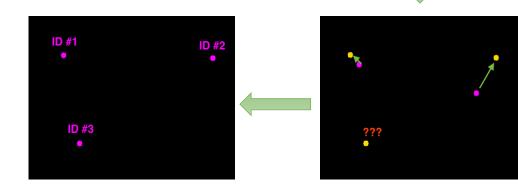
- I. Pasos realizados por el algoritmo para detección de rostros
 - i. Búsqueda de la parte superior de la cabeza:
 - Se efectúa zonas sobre lo que puede ser una división entre pelo y frente.
 - Dificultades: Genera -Verdaderos Negativos- si la persona tiene pelo cubriendo zonas de la frente.
 - ii. Búsqueda de los ojos.
 - A partir de la línea anterior se efectúa un barrido hacia abajo tratando de buscar zonas donde la densidad de gris aumente y disminuya bruscamente en el plano horizontal. Las pupilas de los ojos.
 - Dificultades: Genera –Verdaderos Negativos- si la persona usa gafas.
 - iii. Comparación con plantillas.
 - La distancia entre la línea del pelo y frente y de los ojos se usa como medida de referencia para inicializar la búsqueda y comparación.
 - Se ubican rasgos como la nariz y la boca.
 - Dificultades: Genera –Verdaderos Negativos- si la persona usa bufanda o tapabocas.
 - iv. Generación de box sobre de rostro y ID consecutivo

II. Pasos realizados por el algoritmo para numeración y seguimiento

Paso 1: Los cuadros delimitadores en sí pueden ser proporcionados por:

- 1. Un detector de objetos (HOG + Linear SVM, Faster R- CNN, SSDs, etc.)
- 1. Un seguidor de objetos (tales como filtros de correlación).

Centroids
ID #1
Bounding boxes


Paso 2: calculamos la distancia euclidiana entre los nuevos centroides (amarillo) y los centroides existentes (púrpura).

Pero ¿qué pasa con el punto en la parte inferior izquierda?

No se asoció con nada, ¿qué hacemos?

Para responder a esa pregunta necesitamos realizar el Paso # 4, registrando nuevos objetos:

Paso 4: El algoritmo de seguimiento de centroides supone que los pares de centroides con una distancia euclidiana mínima entre ellos deben ser el mismo ID de objeto.

Paso 3: Una vez que tenemos las distancias euclidianas, intentamos asociar los ID de objeto.

Video estación metro Príncipe de Gales Línea 4 Santiago de Chile – Junio 7 de 2019

looks like a face	99.9 %
appears to be female	54.9 %
age range	26 - 43 years old
smiling	54.3 %
appears to be sad	54.7 %
not wearing glasses	54.9 %

Utilizando Servicio Amazon Rekognition https://aws.amazon.com/rekognition/

looks like a face	99.9 %
appears to be male	54.9 %
age range	23 - 38 years old
not smiling	54.7 %
appears to be sad	50.1 %
not wearing glasses	54.9 %

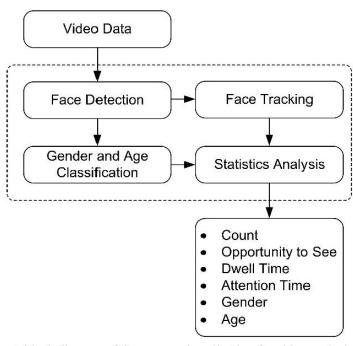


Fig. 1. A block diagram of the proposed application for video analysis

TABLE II. RECOGNITION RATE OF LBP-SVM CLASSIFIER COMPARED TO $$\operatorname{AF-SVM}$$

Algorithm Parameter	AF-S	SVM	LBP-	SVM)
Recognition rate	True	False	True	False
Classified as "male", %	90.6	9.4	90.2	9.8
Classified as "female", %	91	9	94.3	5.7
Total classification rate, %	90.8	9.2	92.3	7.7

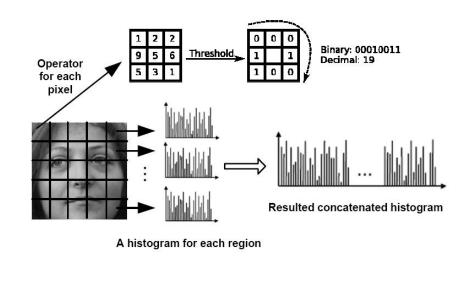
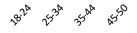


Fig. 2. LBP feature vector extraction procedure

Utilizando algoritmo LBP

Vladimir Khryashchev, Andrey Priorov and Alexander Ganin Image Processing Laboratory, P.G. Demidov Yaroslavl State University Yarodlavl, Russia

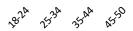

1.067 validaciones

AV CIUDAD DE CALI - 7:30am a 8:00 am

PREDICCIÓN DE EDAD AMAZON REKONIGTION

Rango de Edad 24-34 (Observador) 35-44 45-50

0,07	0,81	0,08	0,04
0,04	0,1	0,75	0,11
0,01	0,02	0,08	0,89



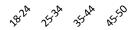
Predicción Rango de Edad

PREDICCIÓN DE EDAD LBP

Rango de Edad 24-34 (Observador) 35-44 45-50

0,06	0,86	0,07	0,01
0,02	0,08	0,83	0,07
0,01	0,06	0,12	0,81

Predicción Rango de Edad


505 validaciones

AV CIUDAD DE CALI - 9:30am a 10:00 am

PREDICCIÓN DE EDAD AMAZON REKONIGTION

Rango de Edad 24-34 (Observador) 35-44 45-50

0,06	0,79	0,08	0,07
0,02	0,09	0,76	0,13
0,02	0,07	0,14	0,77


Predicción Rango de Edad

PREDICCIÓN DE EDAD LBP

Rango de Edad 24-34 (Observador) 45-50

35-44

0,08	0,84	0,07	0,01
0,02	0,07	0,84	0,07
0,02	0,07	0,12	0,79

Predicción Rango de Edad

1,067 validaciones

AV CIUDAD DE CALI - 7:30am a 8:00 am

PREDICCIÓN DE GÉNERO AMAZON REKONIGTION

MUJER Opervago HOMBRE
 0,91
 0,09

 0,05
 0,95

WINTER HOWERE

Predicción Género

505 validaciones

AV CIUDAD DE CALI - 9:30am a 10:00 am

PREDICCIÓN DE GÉNERO AMAZON REKONIGTION

Genero Observador

MUJER

HOMBRE

0,9 0,1 0,08 0,92

MULTE HOMBRE

Predicción Género

PREDICCIÓN DE GÉNERO LBP

Operagor HOMBRE

0,86	0,14
0,12	0,88

MUIER HOMBRE

Predicción Género

PREDICCIÓN DE GÉNERO LBP

Observado

24-34

35-44

0,86	0,14
0,11	0,89

MULER HOMBRE

Predicción Género

3. Validación aforos SmartCard vs Video

Ingresos SmartCard y video Av. Ciudad de Cali 13 de nov 2018

- Validaciones con reportes de SmartCard: 13,556 ingresos.
- Validaciones con contador video: 13,956 ingresos.
- Validación de conteo con video: 91.09% y 92.3%:
 - Valor reportado tullave: 1,067 y 507
 - Valor conteo video: 1,162 y 546
- Prueba 1: 7:30am a 8:00am / Av Ciudad de Cali 13 Nov 2018
- Prueba 2: 9:30am a 10:00am / Av Ciudad de Cali 13 Nov 2018

4. Propuesta arquitectura Edge computing

Facial Recognition using Raspberry Pi, USB Webcam, AWS AI & Lambda Services

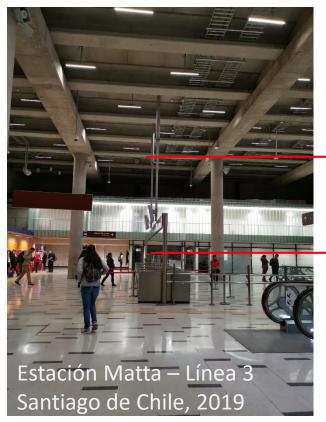
- Inteligencia
 Artificial en IoT en sitio.
- Actuadores en sitio. Ej. alarma visual y sonora por evasión en torniquete. Foto multas personales.
- Almacenamiento e indicadores en la nube.

5. Trabajo futuro

- Detectar y contabilizar en video los comportamientos de evasión.
 - Caso específico con salto del torniquete.
- Asociar la caracterización de género y edad a la detección automática de evasión de pago.
 - Permitirá definir políticas públicas de mitigación enfocadas a cada grupo poblacional.

5. Trabajo futuro

- Proponer una estrategia para sincronizar tiempos y fusionar los datos entre Smart Card – AFC – y los videos de monitoreo a las entradas en las estaciones de Transmilenio.
 - Diferente dimensionalidad
 - Indicador de calidad



5. Trabajo futuro

- Ajuste de algoritmos para diferentes ángulos de captura debido a la altura de la cámaras
 - Diferencias estaciones Metro y Transmilenio

Aprox. 240 cm

Estación Plaza Egaña – Línea 4 Santiago de Chile, 2019

Universidad Tecnológica de Bolívar

Aprox. 30 cm

Avances en el uso de analítica de video para realizar aforos automáticos que permitan el conteo y la caracterización de los usuarios en un sistema de transporte masivo

GRACIAS

Preguntas: pperez@uniandes.edu.co

@GrupoSUR_UAndes

Cartagena de Indias, Colombia 26-28 de Junio de 2019 Organizadores

